Đề thi khảo sát chất lượng HSG Toán 7 đợt 1

Câu I(6đ).

1. Rút gọn biểu thức: $ displaystyle A=frac{{{4}^{5}}{{.9}^{4}}-{{2.6}^{9}}}{{{2}^{10}}{{.3}^{8}}+{{6}^{8}}.20}$

2. So sánh: (-32)9 và (-18)13

3. Chứng tỏ rằng: 817– 279– 913 chia hết cho 405.

Câu II(4đ).

1. Tìm x biết:

a) $ displaystyle frac{x+4}{2000}+frac{x+3}{2001}=frac{x+2}{2002}+frac{x+1}{2003}$

b) $ displaystyle frac{x+3}{x+4}>1$

2. Có 16 tờ tiền mệnh giá 20 000đ, 50 000đ, 100 000đ. Tổng giá trị của mỗi loại mệnh giá đều bằng nhau. Hỏi mỗi loại có mấy tờ ?

Câu III(2đ).

Cho dãy tỉ số bằng nhau:

$ displaystyle frac{2a+b+c+d}{a}=frac{a+2b+c+d}{b}=frac{a+b+2c+d}{c}=frac{a+b+c+2d}{d}$

Tìm giá trị biểu thức: M = $ displaystyle frac{a+b}{c+d}+frac{b+c}{d+a}+frac{c+d}{a+b}+frac{d+a}{b+c}$

Câu IV(6đ).

Cho tam giác cân ABC (AB = AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I cắt AH tại O. Chứng minh $ displaystyle widehat{BMO}=widehat{CNO}$

d) Đường thẳng OI luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC

Câu V(2đ).

Tìm giá trị của số tự nhiên n để $ displaystyle frac{7n-8}{2n-3}$ có giá trị lớn nhất.

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *