Đề thi Toán vào lớp 10 tại Hà Nội từ năm 1988 đến nay

Đề thi Toán vào 10 Hà Nội năm học 1990-1991

Bài 1:

Xét biểu thức:

P = ($ frac{sqrt{x}-1}{3sqrt{x}-1}-frac{1}{3sqrt{x}+1}+frac{5sqrt{x}}{9x-1}$) : (1-$ frac{3sqrt{x}-2}{3sqrt{x}+1}$)

a/ Rút gọn P.

b/ Tìm các giá trị của x để P = $ frac{6}{5}$

Bài 2:

Một xe tải và một xe con cùng khởi hành từ tỉnh A đến tỉnh B. Xe đi với vận tốc 30km/h, xe con đi với vận tốc 45km/h. Sau khi đi được ¾ quãng đường AB, xe con tăng vận tốc thêm 5km/h trên quãng đường còn lại. Tính quãng đường AB, biết rằng xe con đến tỉnh B sớm hơn xe tải 2 giờ 20 phút.

Bài 3:

Cho đường tròn (O), một dây AB và một điểm C ở ngoài tròn nằm trên tia AB. Từ điểm chính giữa của  cung lớn AB kẻ đường kính PQ của đường tròn , cắt dây AB tại D.Tia CP cắt đường tròn tại điểm thứ hai I.Các dây AB và QI cắt nhau tại K.

a/ Cm tứ giác PDKI nội tiếp được.

b/ Cm CI.CP = CK.CD

c/ Cm  IC là tia phân giác của góc ở ngoài đỉnh I của tam giác AIB

d/ Giả sử A,B,C cố định. Cmr khi đường tròn (O)thay đổi nhưng vẫn đi qua B thì đường thẳng QI luôn đi qua một điểm cố định.

Bài 4:

Tìm giá trị của x để biểu thức

y = x – $ sqrt{x-1991}$ đạt giá trị nhỏ nhất và tìm GTNN đó.

Gợi ý giải:

Bài 1:

1/ Đk: x ≠ 1/9  =>   P = ($ frac{sqrt{x}-1}{3sqrt{x}-1}-frac{1}{3sqrt{x}+1}+frac{5sqrt{x}}{9x-1}$) : (1- $ frac{3sqrt{x}-2}{3sqrt{x}+1}$)

=  $ frac{(sqrt{x}-1)(3sqrt{x}+1)-(3sqrt{x}-1)+5sqrt{x}}{(3sqrt{x}-1)(3sqrt{x}+1)}$  :  $ frac{3sqrt{x}+1-3sqrt{x}+2}{3sqrt{x}+1}$

=  $ frac{3x+sqrt{x}-3sqrt{x}-1-3sqrt{x}+1+5sqrt{x}}{(3sqrt{x}-1)(3sqrt{x}+1)}$ . $ frac{3sqrt{x}+1}{3}$ = $ frac{3x}{(3sqrt{x}-1)(3sqrt{x}+1)}$ . $ frac{3sqrt{x}+1}{3}$  = $ frac{x}{3sqrt{x}-1}$

2/ P = $ frac{6}{5}$ ⇔ $ frac{x}{3sqrt{x}-1}$ = $ frac{6}{5}$ => 5x – 6 ($ 3sqrt{x}-1$) = 0 ⇔ 5x – 18$ sqrt{x}$ +6 = 0

Δ =     ⇒ $ sqrt{x}$  =

Bài 2:

Gọi quãng đường AB là x(km, x > 0)

Ta có phương trình: $ frac{x}{30}=frac{3}{4}.frac{x}{45}+frac{1}{4}.frac{x}{50}+2frac{1}{3}$

Bài 3:

Đề thi Toán vào lớp 10 tại Hà Nội từ năm 1988 đến nay-3

Hình vẽ bài 3

a/ tứ giác PDKI nội tiếp được vì $ displaystyle widehat{PDK}=widehat{PIK}$ = 90°
b/ CI.CP = CK.CD vì  ΔICK ~  ΔDCP

c/ IC là tia pg vì IQ là pg $ displaystyle widehat{AIB}$ và IC ⊥ IQ

d/  K là điểm cố định vì IC, IK là các phân giác trong và ngoài tại I của tam giác AIB ( chia điều hòa) $ frac{KB}{KA}=frac{IB}{IA}=frac{CB}{CA}$ mà A,B,C cố định.

Bài 4:

Tìm giá trị của x để biểu thức

y = x – $ sqrt{x-1991}$ đạt giá trị nhỏ nhất

y = x – $ sqrt{x-1991}$  =  [( x – 1991)- $ sqrt{x-1991}$ + $ frac{1}{4}$] –  $ frac{1}{4}$ + 1991

= ($ sqrt{x-1991}$ – $ frac{1}{2}$)2 + $ 1990frac{3}{4}$ ≥ $ frac{1}{4}$ + $ 1990frac{3}{4}$ = 1991

⇒ Min y = 1991 khi x = 1991

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *