Bình Định

Đề thi Toán vào 10 THPT chuyên Lê Quý Đôn – Bình Định 2017 – 2018

Bài 1: (2,0 điểm)   Cho biểu thức A =  $ \left( \frac{\sqrt{\text{x}}\,\,-\,\,2}{\text{x}\,\,-\,\,1}\,\,-\,\,\frac{\sqrt{\text{x}}\,\,+\,\,2}{\text{x}\,\,+\,\,2\sqrt{\text{x}}\,\,+\,\,1} \right)\frac{{{\text{x}}^{2}}\,\,-\,\,2\text{x}\,\,+\,\,1}{2}$a) Tìm điều kiện của x để biểu thức A có nghĩa. Rút gọn Ab) Tìm x để A ≥ 0c)  Tìm giá trị lớn nhất của A.Bài 2: (2,0 điểm)1) Giải phương trình sau: $ 4{{\text{x}}^{4}}\,\,+\,\,4{{\text{x}}^{3}}\,\,-\,\,20{{\text{x}}^{2}}\,\,+\,\,2\text{x}\,\,+\,\,1\,\,=\,\,0$2) Chứng minh rằng nếu số tự nhiên $ […]

Đề thi HSG môn Toán lớp 9 tỉnh Bình Định năm học 2012-2013

Đề thi học sinh giỏi môn Toán lớp 9 Sở giáo dục và đào tạo tỉnh Bình Định năm học 2012-2013. Thời gian làm bài 150 phút.Bài 1: (5 điểm)a) Tính giá trị của biểu thức : $ \displaystyle A=\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2}-\sqrt{3}}$b) Giải phương trình : $ \displaystyle \left\{ \begin{array}{l}{{x}^{2}}+{{y}^{2}}=11\\x+xy+y=3+4\sqrt{2}\end{array} \right.$Bài 2: (4,0 điểm)a) Chứng minh rằng trong 8 […]