CHUYÊN ĐỀ 5: SỐ CHÍNH PHƯƠNG
A. Số chính phương:
1. Một số kiến thức:
Số chính phương: số bằng bình phương của một số khác
Ví dụ:
4 = 22; 9 = 32
A = 4n2 + 4n + 1 = (2n + 1)2 = B2
+ Số chính phương không tận cùng bởi các chữ số: 2, 3, 7, 8
+ Số chính phương chia hết cho 2 thì chia hết cho 4, chia hết cho 3 thì chia hết cho 9, chia
hết cho 5 thì chia hết cho 25, chia hết cho 23 thì chia hết cho 24,…
+ Số $ displaystyle underbrace{text{11}…text{1}}_{text{n}}$ = a thì $ displaystyle underbrace{text{99}…text{9}}_{text{n}}$ = 9a ⇔ 9a + 1 = $ displaystyle underbrace{text{99}…text{9}}_{text{n}}$ + 1 = 10n
B. Một số bài toán:
1. Bài 1:
Chứng minh rằng: Một số chính phương chia cho 3, cho 4 chỉ có thể dư 0 hoặc 1
Giải:
Gọi A = n2 (n ∈ N)
a) xét n = 3k (k ∈ N) ⇒ A = 9k2 nên chia hết cho 3
n = 3k ±1 (k ∈ N) A = 9k2 ± 6k + 1, chia cho 3 dư 1
Vậy: số chính phương chia cho 3 dư 0 hoặc 1
b) n = 2k (k ∈ N) thì A = 4k2 chia hết cho 4
n = 2k +1 (k ∈ N) thì A = 4k2 + 4k + 1 chia cho 4 dư 1
Vậy: số chính phương chia cho 4 dư 0 hoặc 1
Chú ý:
+ Số chính phương chẵn thì chia hết cho 4
+ Số chính phương lẻ thì chia cho 4 thì dư 1( Chia 8 cũng dư 1)
- Baøi 2: Soá naøo trong caùc soá sau laø soá chính phöông
- a) M = 19922 + 19932 + 19942
- b) N = 19922 + 19932 + 19942 + 19952
- c) P = 1 + 9100 + 94100 + 1994100
- d) Q = 12 + 22 + …+ 1002
- e) R = 13 + 23 + … + 1003
Giải:
a) Các cố 19932, 19942 chia cho 3 dư 1, còn 19922 chia hết cho 3 ⇒ M chia cho 3 dư 2 do đó M không phải là số chính phương.
b) N = 19922 + 19932 + 19942 + 19952 gồm tổng hai số chính phương chẵn chia hết cho 4, v hai số chính phương lẻ nên chia 4 dư 2 suy ra N không là số chính phương.
c) P = 1 + 9100 + 94100 + 1994100 chia 4 dư 2 nên không là số chính phương
d) Q = 12 + 22 + …+ 1002
Số Q gồm 50 số chính phương chẵn chia hết cho 4, 50 số chính phương lẻ, mỗi số chia 4 dư 1 nên tổng 50 số lẻ đó chia 4 thì dư 2 do đó Q chia 4 thì dư 2 nên Q không là số chính phương.
e) R = 13 + 23 + … + 1003
Gọi Ak = 1 + 2 +… + k = $ frac{text{k(k + 1)}}{text{2}}$ , Ak – 1 = 1 + 2 +… + k = $ frac{text{k(k – 1)}}{text{2}}$
Ta có: Ak2 – Ak -12 = k3 khi đó:
13 = A12
23 = A22 – A12
…………………
n3 = An2 = An – 12
Cộng vế theo vế các đẳng thức trên ta có:
13 + 23 + … +n3 = An2 = $ {{left[ frac{text{n(n + 1)}}{text{2}} right]}^{2}}={{left[ frac{100(100+1)}{2} right]}^{2}}={{left( 50.101 right)}^{2}}$ là số chính phương.