Chuyên đề Hàm số lượng giác – Toán lớp 10

Chuyên đề Hàm số lượng giác lớp 10 bao gồm kiến thức lý thuyết lượng giác cần nhớ và các bài tập tự giải.

A. Kiến thức cần nhớ

Chuyên đề Hàm số lượng giác - Toán lớp 10

1. Các hằng đẳng thức cơ bản

a) sin2xcos2x=1

b) tanx=fracsinxcosx

c) cotx=fraccosxsinx

d) 1tan2x=frac1cos2x

e) 1cot2x=frac1sin2x f) tanx.cotx=1

2. Giá trị của các hàm lượng giác cung liên quan đặc biệt

a) Hai cung đối nhau

beginarraylcos(x)=cosxsin(x)=sinxtan(x)=tanxcot(x)=cotxendarray

b) Hai cung bù nhau

beginarraylsin(pix)=sinxcos(pix)=cosxtan(pix)=tanxcot(pix)=cotxendarray

c) Hai cung khác nhau

beginarraylsin(x2pi)=sinxcos(x2pi)=cosxtan(x2pi)=tanxcot(x2pi)=cotxendarray

d) Hai cung khác nhau

beginarraylsin(pix)=sinxcos(pix)=cosxtan(pix)=tanxcot(pix)=cotxendarray

e) Hai cung phụ nhau

beginarraylsinleft(fracpi2xright)=cosxtext;textcosleft(fracpi2xright)=sinxtanleft(fracpi2xright)=cotxtext;cotleft(fracpi2xright)=tanxendarray

B. Bài tập

1. Tìm các giá trị của alphađể biểu thức sau đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.

A=frac11sinalphatext;B=frac11cosalpha

2. Xét dấu của các biểu thức sau:

a) sin123osin132o

b) cot304ocot316o

3. Rút gọn các biểu thức sau:

a) 5tan540o2cos1170o4sin990o3cos540o

b) 3sinfrac25pi63tanfrac13pi42cosfrac19pi3

c) sin215osin235osin255osin275o

d) cos215ocos235ocos255ocos275o

e) sin2fracpi12sin2frac3pi12sin2frac5pi12sin2frac7pi12sin2frac9pi12sin2frac11pi12

f) cos2fracpi12cos2frac3pi12cos2frac5pi12cos2frac7pi12cos2frac9pi12cos2frac11pi12

g) sin(pia)cosleft(fracpi2aright)cot(2pia)tanleft(frac3pi2aright)

h) A=sin4acos2asin2a.cos2a

i) B=fracleft(sinfraca2cosfraca2right)21tanfraca2sinfraca2.cosfraca2

j) C=fraccos2696otan(260o).tan530ocos2156tan2252ocot2342o

k) left[tanfrac17pi4tanleft(frac7pi2bright)right]2left[cotfrac13pi4cotleft(7pibright)right]2

l) left(sqrtfrac1sinx1sinxsqrtfrac1sinx1sinxright)left(sqrtfrac1cosx1cosxsqrtfrac1cosx1cosxright)

m) sin3a(1cota)cos3a(1tana)

n) fractanbtanbcotb

o) frac1cos4asin4acos4a

p) fracsin(xpi).cos(x2pi).sin(2pix)sinleft(fracpi2xright).cot(pix).cotleft(frac3pi2xright)

q) left[sinleft(fracpi2xright)sin(pix)right]2left[cosleft(frac3pi2xright)cos(2pix)right]2

r) sinleft(fracpi3aright).tanleft(frac2pi3aright).cosleft(frac5pi3aright)tan(pia).tanleft(frac3pi2aright)

s) fraccot(5,5pia)tan(b4pi)cot(a6pi)tan(b3,5pi)

t) tan50o.tan190o.tan250o.tan260o.tan400o.tan700o

4. Cho A, B, C là ba góc của tam giác ABC. Chứng minh:

a) sin(AB)=sinCtext;cos(BtextC)=textcosA c) tan(AC)=tanB;textcot(AtextB)=textcotC

b) textsinfractextAtextBtext2=cosfracC2text;cosfractextBtextCtext2=sinfracA2 d) tanfracAC2=cotfracB2;textcotfractextAtextBtext2=tanfracC2

5. Tìm giá trị lớn nhất của hàm số: y=frac2cosxsinxcosx2

6. Tìm giá trị nhỏ nhất và lớn nhất của hàm số trong khoảng $ -pi

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *