Đề thi học kì 2 môn Toán 7 THCS Lý Thường Kiệt năm 2017 – 2018

Đề thi học kì 2 môn Toán lớp 7 trường THCS Lý Thường Kiệt, Phòng giáo dục và đào tạo quận Đống Đa năm học 2017 – 2018.

Thời gian làm bài 90 phút (không kể thời gian giao đề).

ĐỀ SỐ 2

I/ TRẮC NGHIỆM (2 điểm): Khoanh tròn chữ cái trước câu trả lời đúng

Câu 1: Giá trị của đa thức P = 2x3 – 3y2 – 2xy khi x = -2; y = -3 là:

     A. -54      B. -24      C. -23      D. -55

Câu 2: Bậc của đa thức x100 – 2x5 – 2x3 + 3x4 + x – 2018 + 2x5 – x100 + 1 là:

     A. 4      B. 100      C. 5      D. 113

Câu 3: Các khẳng định sau đây là Đúng hay Sai

Các khẳng định
1/ Số 0 là đơn thức không có bậc
2/ Trong DABC nếu  thì BA > BC
3/ Giao điểm 3 đường phân giác của tam giác là trọng tâm của tam giác đó.
4/ Độ dài 1 cạnh của một tam giác đều nhỏ hơn nửa chu vi của tam giác ấy.

II/ TỰ LUẬN (8 điểm)

Bài 1: (1 điểm): Thời gian làm một bài toán (tính bằng phút) của 30 học sinh được ghi lại như sau:

10 5 8 8 9 7 8 9 14 8
5 7 7 10 9 8 10 9 14 9
9 8 9 9 9 9 10 5 5 14

a/ Dấu hiệu điều tra ở đây là gì?

b/ Lập bảng tần số, tìm mốt của dấu hiệu.

Bài 2: (1 điểm): Thu gọn rồi tìm bậc, hệ số của các đơn thức tìm được

$ displaystyle text{A = }left( {frac{{text{-3}}}{text{5}}{{text{x}}^{text{2}}}{{text{y}}^{2}}} right)text{ }text{. }frac{text{2}}{text{3}}{{text{x}}^{2}}text{y}$                              $ displaystyle text{B = }left( {text{-2}frac{1}{text{3}}{{text{x}}^{text{2}}}{{text{y}}^{text{2}}}} right)text{ }text{. }frac{text{9}}{{text{16}}}text{x}{{text{y}}^{2}}text{ }text{. }{{left( {text{-2}{{text{x}}^{2}}text{y}} right)}^{text{3}}}$

Bài 3: (2 điểm): Cho hai đa thức

P(x) = 1 + 3x4 + 2x2 + x4 + x3 + 5x2 + 3x3 ; Q(x) = –4x4 – 2x2 – 4x3 + 2x – 4x2 – x – $ displaystyle frac{text{1}}{text{4}}$

a/ Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến.

b/ Tính P(x) + Q(x); P(x) – Q(x).

c/ Chứng tỏ P(x) + Q(x) không có nghiệm.

Bài 4: (3,5 điểm): Cho DABC vuông tại B, đường cao BK (K thuộc AC). Vẽ BH là tia phân giác của $ displaystyle text{A}widehat{text{B}}text{K}$ (H thuộc AC). Kẻ HD vuông góc AB.

a/ Chứng minh DBHK = DBHD

b/ Gọi giao điểm của DH và BK là I. Chứng minh: IK = AD.

c/ Chứng minh DK // AI.

d/ Các đường phân giác của DBKC cắt nhau tại M. Gọi N là giao điểm của CM và BK. Chứng minh N là trực tâm của DBHC.

Bài 5: (0,5 điểm): Tìm GTNN của biểu thức (x2 – 9)2 + |y – 3| – 1

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *