Đề thi học sinh giỏi Toán 9 huyện Lương Tài 2015-2016

Phòng giáo dục và đào tạo huyện Lương Tài, đề thi học sinh giỏi cấp huyện năm học 2015-2016, môn thi Toán 9.

Thời gian: 150 phút (không kể thời gian giao đề)

Bài 1: (2,0 điểm)

Cho biểu thức: $ P=frac{{{x}^{2}}-sqrt{x}}{x+sqrt{x}+1}-frac{2x+sqrt{x}}{sqrt{x}}+frac{2left( x-1 right)}{sqrt{x}-1}.$

a) Rút gọn P.

b) Tìm giá trị nhỏ nhất của P.

c) Xét biểu thức: $ Q=frac{2sqrt{x}}{P},$ chứng tỏ 0 < Q < 2

Bài 2: (2,0 điểm)

1. Giải phương trình:

$ sqrt{{{x}^{2}}-3x+2}+sqrt{x+3}=sqrt{x-2}+sqrt{{{x}^{2}}+2x-3}$

2. Cho đường thẳng (d): y = (m + 4)x – m + 6.

a,Tìm m để (d) cắt đường thẳng (d­­1) y = 2x + 4 tại một điểm trên trục hoành.

b, Chứng minh rằng: khi m thay đổi thì đường thẳng (d) luôn đi qua một điểm cố định.

Bài 3: (2,0 điểm)

1. Tìm nghiệm nguyên dương của phương trình: xy- 2x + 3y = 21

2. Chứng minh rằng với mọi x, y nguyên thì

A  = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4 là số chính phương

Bài 4 (3,0 điểm)

Cho AB là đường kính của đường tròn (O;R). C là một điểm thay đổi trên đường tròn (C khác A và B), kẻ CH vuông góc với AB tại H. Qua A kẻ đường thẳng xy vuông góc với AB. Gọi I là trung điểm của AC, OI cắt đường thẳng xy tại M, MB cắt CH tại K.

a) Chứng minh MC ⊥ OC

b) Chứng minh K là trung điểm của

c) Xác định vị trí của C để chu vi tam giác ACB đạt giá trị lớn nhất? Tìm giá trị lớn nhất đó theo R.

Câu 5: (1điểm )

Cho a, b, c là ba số thực dương thỏa mãn điều kiện a + b + c = 1. Tìm giá trị lớn nhất của biểu thức: P = $ sqrt{frac{ab}{c+ab}}+sqrt{frac{bc}{a+bc}}+sqrt{frac{ca}{b+ca}}$ .

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *