bậc hai

Phương trình quy về phương trình bậc hai

Có hai dạng phương trình có thể quy về phương trình bậc hai đó là: phương trình trùng phương, phương trình chứa ẩn ở mẫu thức.1. Phương trình trùng phương– Phương trình trùng phương là phương trình có dạng:$ \displaystyle ax_{{}}^{4}+bx_{{}}^{2}+c=0$ (a ≠ 0)– Giải phương trình trùng phương $ \displaystyle ax_{{}}^{4}+bx_{{}}^{2}+c=0$ (a ≠ 0)+ Đặt $ […]

Hệ thức Vi-ét và ứng dụng giải hệ phương trình bậc hai

1. Hệ thức Vi-étNếu $ \displaystyle {{x}_{1}},{{x}_{2}}$ là hai nghiệm của phương trình $ \displaystyle ax_{{}}^{2}+bx+c=0$, a ≠ 0 thì:$ \displaystyle \left\{ \begin{array}{l}{{x}_{1}}+{{x}_{2}}=\frac{-b}{a}\\{{x}_{1}}{{x}_{2}}=\frac{c}{a}\end{array} \right.$2. Ứng dụng của định lý Vi-éta. Tính nhẩm nghiệm– Nếu phương trình ax2 + bx + c = 0$ \displaystyle ax_{{}}^{2}+bx+c=0$ có a + b + c = 0 thì phương trình có […]

Công thức nghiệm của phương trình bậc hai ax^2+bx+c=0 (a ≠ 0)

Công thức nghiệm của phương trình bậc hai $ \displaystyle ax_{{}}^{2}+bx+c=0$ (a ≠ 0)Đối với phương trình $ \displaystyle ax_{{}}^{2}+bx+c=0$ (a ≠ 0) và biểu thức $ \displaystyle \Delta =b_{{}}^{2}-4ac$:– Nếu ∆ > 0 thì phương trình có hai nghiệm phân biệt:$ \displaystyle {{x}_{1}}=\frac{-b+\sqrt{\Delta }}{2a}$ và $ \displaystyle {{x}_{2}}=\frac{-b-\sqrt{\Delta }}{2a}$– Nếu ∆ = 0 thì phương trình […]

Dấu của tam thức bậc hai

Lý thuyết về dấu của tam thức bậc hai1. Định nghĩa tam thức bậc haiTam thức bậc hai là biểu thức có dạng $\displaystyle f(x)=ax_{{}}^{2}+bx+c$ trong đó $\displaystyle x$ là biến a, b, c là các số đã cho, với a ≠ 0. – Định lí thuận về dấu của tam thức bậc 2: Cho […]