Bài tập tuần 10 – Ôn tập chương 1 – Đại số 8

Bài toán 1: Rút gọn:

a) $ A={{x}^{2}}(x-2)-(x-1)left( {{{x}^{2}}+x+1} right)$

b) $ B={{(xy-1)}^{2}}-(xy-1)(xy+2)$

c) $ C=(x-1)(x-2)(x+2)-{{(x-3)}^{3}}$

d) $ D=(xy-1)(xy-2)-{{(xy-2)}^{2}}$

Bài toán 2: Hoàn thành các đẳng thức sau:
a) $ {{x}^{2}}+4x+ldots ={{(x+ldots )}^{2}}$

b) $ ldots -12x+9={{(2x-ldots )}^{2}}$

c) $ 4{{x}^{2}}+ldots +ldots ={{(2x-3y)}^{2}}$

d) $ (x-ldots )left( {ldots +frac{y}{2}} right)=ldots -frac{{{{y}^{2}}}}{4}$

e) $ 4{{x}^{4}}+12{{x}^{2}}y+ldots ={{left( {2{{x}^{2}}+ldots } right)}^{2}}$

f) $ ..-4xy+4={{(2-ldots )}^{2}}$

g) $ -4{{x}^{2}}-ldots +ldots =-{{(2x-y)}^{2}}$

h) $ (-2x+ldots )left( {ldots -{{y}^{2}}} right)=4{{x}^{2}}-{{y}^{4}}$

Bài toán 3: Tính giá trị biểu thức:

a) $ A=(1-3x)left( {9{{x}^{2}}+3x+1} right)-left( {6-26{{x}^{3}}} right)$ tại $ x=5$

b) $ B={{(2x-3)}^{2}}+{{(2x+1)}^{2}}-2left( {4{{x}^{2}}-9} right)$ tại $ x=3$

c) $ C=(x-2y)left( {{{x}^{2}}+2xy+4{{y}^{2}}} right)+{{(2y-x)}^{3}}$ tại $ x=-1;y=2$

d) $ D=(2xy-2)(2xy+3)-{{(1-2xy)}^{2}}$ tại $ x=frac{1}{2};y=-1$

Bài toán 4: Chứng minh giá trị của các biểu thức sau đậy không phụ thuộc vào x:

$ A=(x-1)left( {{{x}^{2}}+x+1} right)+{{(x-2)}^{3}}-2(x+1)left( {{{x}^{2}}-x+1} right)+6{{(x-1)}^{2}}$

$ B=(3-x)left( {{{x}^{2}}+3x+9} right)-{{(x+2)}^{3}}+2(x+2)left( {4-2x+{{x}^{2}}} right)+6x(x+2)$

Bài toán 5: Phân tích các đa thức sau thành nhân tử

a) $ {{x}^{4}}+1-2{{x}^{2}}$

b) $ {{x}^{2}}-{{y}^{2}}+5x-5y$

c) $ {{y}^{2}}-4{{x}^{2}}+4x-1$

d) $ {{x}^{3}}{{(2+x)}^{2}}-{{(x+2)}^{2}}+1-{{x}^{3}}$

e) $ 2{{x}^{3}}-{{x}^{2}}-8x+4$

f) $ 4{{x}^{2}}-16{{x}^{2}}{{y}^{2}}+{{y}^{2}}+4xy$

g) $ {{x}^{3}}-16x-15x(x-4)$

h) $ x{{(x-y)}^{2}}+y{{(x-y)}^{2}}-xy+{{x}^{2}}$

Bài toán 6: Phân tích các đa thức sau thành nhân tử

a) $ {{x}^{2}}-8x+7$

b) $ 2{{x}^{2}}-5x+2$

c) $ {{x}^{4}}+64$

d) $ {{left( {8-2{{x}^{2}}} right)}^{2}}-18(x+2)(x-2)$

e) $ 2{{x}^{2}}-9x-11$

f) $ 3{{x}^{2}}-10x+3$

g) $ {{x}^{5}}+x+1$

h) $ 2{{x}^{4}}+12{{x}^{3}}+14{{x}^{2}}-2x-6$

Bài toán 7: Thực hiện phép tính:

a) $ 128{{x}^{3}}:{{(2x)}^{2}}$

b) $ {{(-3x)}^{4}}y{{z}^{5}}:27{{x}^{2}}y{{z}^{2}}$

c) $ -10{{y}^{3}}{{x}^{2}}:3{{x}^{2}}y$

d) $ {{x}^{3}}{{(2y)}^{4}}{{z}^{2}}:left( {-6{{x}^{2}}{{z}^{2}}} right)$

Bài toán 8: Thực hiện phép tính:

a) $ frac{4}{5}{{x}^{3}}{{y}^{3}}zleft( {frac{{-5}}{8}{{z}^{3}}+5xz-frac{1}{6}{{y}^{2}}z} right)$

b) $ (x-2)(x+3)(x+2)$

c) $ left( {-2x+frac{{3y}}{2}} right)left( {4{{x}^{2}}+3xy+frac{{9{{y}^{2}}}}{4}} right)$

d) $ (x-1)left( {{{x}^{2}}-2x+3} right)$

Bài toán 9: Thực hiện phép tính:

a) $ left( {{{x}^{3}}-3x-2} right):(x-2)$

b) $ left( {{{x}^{3}}+6{{x}^{2}}+8x-3} right):left( {{{x}^{2}}+3x-1} right)$

c) $ left( {2{{x}^{4}}-7{{x}^{3}}+9{{x}^{2}}-7x+2} right):left( {2{{x}^{2}}-5x+2} right)$

d) $ left( {2{{x}^{3}}+4{{x}^{2}}+5x+10} right):left( {2{{x}^{2}}+5} right)$

e) $ left( {{{x}^{3}}+2{{x}^{2}}-1} right):left( {2{{x}^{2}}+x+1} right)$

Bài toán 10: Cho $ A={{x}^{2}}-6x+11$ và $ B=9+4x-{{x}^{2}}$

a) Tìm giá trị nhỏ nhất của A

b) Tìm giá trị lớn nhất của B

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *