1. Tìm mẫu thức chung – Phân tích mẫu thức của các phân thức đã cho thành nhân tử. – Mẫu thức chung cần tìm là một tích mà các nhân tử được chọn như sau: + Nhân tử bằng số của mẫu thức chung là tích các nhân tử bằng số ở các mẫu […]
Toán lớp 8
Kiến thức Toán lớp 8, các dạng toán cơ bản và nâng cao Toán 8, bài tập Toán 8 bồi dưỡng học sinh khá giỏi ôn luyện trong các kì thi.
Quy tắc rút gọn phân thức
Quy tắc rút gọn phân thức Muốn rút gọn một phân thức đại số ta phải: – Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung – Chia cả tử và mẫu cho nhân tử chung giống nhau * Chú ý: Có khi cần đổi dấu tử hoặc mẫu thức […]
Tính chất cơ bản của phân thức, quy tắc đổi dấu
1. Tính chất cơ bản của phân thức Nếu nhân hoặc chia cả tử và mẫu của một phân thức với cùng một đa thức khác đa thức không thì được một phân thức bằng phân thức đã cho. $ \displaystyle \frac{A}{B}=\frac{A.M}{B.M}$ $ \displaystyle \frac{A}{B}=\frac{A:M}{B:M}$ (M là một đa thức khác đa thức 0) 2. Quy tắc […]
Định nghĩa phân thức đại số
1. Định nghĩa phân thức đại số Phân thức đại số (phân thức) là một biếu thức có dạng $ \displaystyle \frac{A}{B}$, trong đó A, B là những đa thức B ≠ 0, A là tử thức, B là mẫu thức. Đặc biệt: Mỗi đa thức cúng được coi như một phân thức với mấu thức […]
Chia đa thức một biến đã sắp xếp
Phương pháp: Ta trình bày phép chia tương tự như cách chia các số tự nhiên. Với hai đa thức A và B của một biến, B ≠ 0 tồn tại duy nhất hai đa thức Q và R sao cho: A = B . Q + R, với R = 0 hoặc bậc bé […]
Quy tắc chia đa thức cho đơn thức
1. Quy tắc Muốn chia đa thức A cho đơn thức B (trường hợp các hạng tử của đa thức A đều chia hết cho đơn thức B), ta chia mỗi hạng tử của A cho B rồi cộng các kết quả với nhau. 2. Chú ý khi chia đa thức cho đơn thức Trường hợp […]
Quy tắc chia đơn thức cho đơn thức
1. Đơn thức chia hết cho đơn thức Với A và B là hai đơn thức, B ≠ 0. Ta nói A chia hết cho B nếu tìm được một đơn thức Q sao cho A = B . Q Kí hiệu: Q = A : B = A / B 2. Quy tắc Muốn […]
Hai điểm đối xứng, đối xứng trục
1. Hai điểm đối xứng qua một đường thẳng Định nghĩa: Hai điểm gọi là đối xứng với nhau qua đường thẳng d nếu d là đường trung trực của đoạn thẳng nối hai điểm đó. Qui ước: Nếu điểm B nằm trên đường thẳng d thì điểm đối xứng với B qua đường thẳng […]
Bài toán dựng hình bằng thước và compa
I. Bài toán dựng hình Ta đã biết vẽ hình bằng nhiều dụng cụ: thước, compa, êke…. Ta xét các bài toán vẽ hình mà chỉ sử dụng hai dụng cụ là thước và compa, chúng được gọi là các bài toán dựng hình. Với thước, ta có thể: – Vẽ được một đường thẳng […]
Đường trung bình của tam giác, hình thang
1. Đường trung bình của tam giác a. Định nghĩa Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác. b. Định lí Định lí 1: Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung […]
Định nghĩa, dấu hiệu nhận biết hình thang cân
1. Định nghĩa hình thang cân Hình thang cân là hình thang có hai góc kề một đáy bằng nhau. ABCD là hình thang cân có hai đáy là AB và CD ⇔ AB // CD và $ \displaystyle \widehat{C}=\widehat{D}$ 2. Tính chất hình thang cân Định lí 1: Trong một hình thang cân, hai cạnh bên […]
Định nghĩa hình thang, hình thang vuông
1. Định nghĩa hình thang Hình thang là tứ giác có hai cạnh đối song song. Hai cạnh song song gọi là hai đáy. Hai cạnh còn lại gọi là hai cạnh bên. 2. Nhận xét – Nếu một hình thang có hai cạnh bên song song thì hai cạnh bên bằng nhau, hai cạnh […]
Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
1. Phương pháp thực hiện Ta tìm hướng giải bằng cách đọc kỹ đề bài và rút ra nhận xét để vận dụng các phương pháp đã biết: đặt nhân tử chung, dùng hằng đẳng thức, nhóm nhiều hạng tử và phối hợp chúng để phân tích đa thức thành nhân tử. 2. Chú ý […]
Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
1. Phương pháp nhóm hạng tử – Ta vận dụng phương pháp nhóm hạng tử khi không thể phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung hay bằng phương pháp dùng hằng đẳng thức. – Ta nhận xét để tìm cách nhóm hạng tử một cách thích hợp (có thể […]
Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
Phương pháp dùng hằng đẳng thức là phương pháp sử dụng các hằng đẳng thức đáng nhớ để đưa đa thức thành dạng tích của những đa thức. Các em xem qua ví dụ phân tích đa thức thành nhân tử dưới đây để hiểu rõ về phương pháp này. Ví dụ 1: $ \displaystyle […]
Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
1. Khái niệm về phương pháp đặt nhân tử chung Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích của những đa thức. 2. Ứng dụng của việc phân tích đa thức thành nhân tử Việc phân tích đa thức thành nhân tử giúp chúng […]
Những hằng đẳng thức đáng nhớ
Dưới đây là những hằng đẳng thức đáng nhớ: 1. Bình phương của một tổng $ \displaystyle \left( A+B \right)_{{}}^{2}=A_{{}}^{2}+2AB+B_{{}}^{2}$ 2. Bình phương của một hiệu $ \displaystyle \left( A-B \right)_{{}}^{2}=A_{{}}^{2}-2AB+B_{{}}^{2}$ 3. Hiệu của hai bình phương $ \displaystyle A_{{}}^{2}-B_{{}}^{2}=\left( A+B \right)\left( A-B \right)$ 4. Lập phương của một tổng $ \displaystyle \left( A+B \right)_{{}}^{3}=A_{{}}^{3}+3A_{{}}^{2}B+3AB_{{}}^{2}+B_{{}}^{3}$ 5. […]
Nhân đa thức với đa thức
1. Qui tắc nhân đa thức với đa thức Muốn nhân một đa thưc với một đa thức ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau. 2. Công thức nhân đa thức với đa thức Cho A, B, C, D là các […]
Lý thuyết tứ giác
1. Định nghĩa tứ giác Tứ giác ABCD là hình gồm bốn đoạn thẳng AB, BC, CD, DA, trong đó bất kì đoạn thẳng nào cũng không cùng nằm trên một đường thẳng. 2. Tứ giác lồi Tứ giác lồi là tứ giác luôn nằm trong một nửa mặt phẳng mà bờ là đường thẳng […]
Lý thuyết nhân đơn thức với đa thức
Muốn nhân một đơn thức với một đa thức ta nhân đơn thức với từng số hạng của đa thức rồi cộng các tích với nhau. Kiến thức cơ bản về đơn thức, đa thức 1. Quy tắc nhân đơn thức với đa thức Muốn nhân một đơn thức với một đa thức ta nhân […]